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Abstract—There has been recent interest in MIMO radars
which employ sub-arrays at the transmitter. This architecture
allows a trade-off between the coherent beamforming gain of a
phased array antenna and the transmit beampattern diversity
offered by a MIMO radar with full transmit diversity, while
maintaining a relatively simple implementation in the transmit
hardware. In this work we study the maximum likelihood (ML)
receiver for a transmit sub-arrayed MIMO radar, for estimating
the direction of arrival of multiple targets. We develop the
likelihood function for an orthogonal sub-arrayed MIMO radar
for receiver architectures with and without a matched-filter
bank. The maximisation of these likelihood functions form multi-
dimensional optimisation problems which can be solved using a
variety of sub-optimal numerical algorithms.

Index Terms—MIMO Radar, Estimation, Maximum Likeli-
hood

I. INTRODUCTION

Orthogonal MIMO radars are able to create an extended
aperture, which is formed due to the separable time delays of
the transmitted signals impinging on the radar’s receiver [1].
Sub-arrayed MIMO radars have recently received some inter-
est from researchers [2], [3], [4], due to the trade-off which is
offered between beamforming gain and transmit beampattern
diversity. The work of [2] concentrates on the optimisation of
the sub-array geometry and transmit sub-array steering vectors
which is done in terms of the Cramér-Rao lower bound (CRB)
on target direction of arrival (DOA) estimates for multiple
point targets. We build on that work here, by studying the
maximum likelihood (ML) receiver for an orthogonal MIMO
radar which employs transmit sub-arrays. Maximum likelihood
estimation is an important theoretical benchmark because it
achieves the CRB, asymptotically with increasing signal to
noise ratio (SNR) or number of snapshots. That is, an ML
estimator can provide the lowest unbiased estimation error
variance. Attaining the ML estimate for an estimation problem
is often computationally intensive, so sub-optimum estimates
need to be made for real-time processing.

The motivation for using sub-arrays for resolving multiple
targets can be viewed from a monopulse perspective. It is well
known that a single target can be accurately located utilising
2 squinted beams, though introducing a second target means
that the two beams do not contain the information necessary
to determine the target parameters. Multiple beams formed
from transmit sub-arrays allow the target parameters to be
determined, by effectively increasing the number of available

equations to solve for a fixed number of unknowns. Practically,
the monopulse approach to this problem is unfruitful as
estimating high-order components of the beampatterns makes
the process inaccurate and also a closed form solution to the set
of equations formed is not available, so numerical procedures
need to be employed. The maximum likelihood estimate
effectively provides the solution to this set of equations.

A link may also be drawn to the amplitude modulation
induced by targets illuminated by a scanning antenna described
in [5], [6], [7]. In that system pulses from the radar transmitter
are separated in the temporal processing, where as in the sub-
arrayed MIMO radar the beams are distinguishable through
the waveform coding. This allows data to be collected in a
single snapshot rather than over several pulses which may be
advantageous in environments with a short coherence time. An
illustration of this concept is shown in figure 1.

Fig. 1. Illustration of beampatterns formed from sub-arrays to locate multiple
targets

The rest of the paper is organised as follows. In section
II we describe the radar studied as part of this work, and
develop the signal model used here. The likelihood function
for this signal model is given in section III for the two receiver
architectures with and without a matched-filter bank. In section
IV we display simulation results for some simple scenarios,
and draw our conclusions in section V.



II. SIGNAL MODEL

We assume that the transmitter consists of a uniform linear
array (ULA) of NT elements with an antenna spacing of dt,
which is divided into NS sub-arrays, each of which uses
a different orthogonal narrowband signal from the set of
waveforms [s1⋯sNS

]. The number of elements in each sub-
array need not be equal, though throughout the work presented
here it is assumed that this is the case. In general, however,
the number of elements in the ith sub-array may be denoted
Ni. An example transmit array is displayed in figure 2. In
this instance, the sub-arrays do not overlap as this is the
architecture we will consider throughout the paper, though
we note that the signal model and methods used here are
equally applicable to the overlapping sub-array geometry, in
for example [3].

Fig. 2. Sub-arrayed MIMO Radar Transmit Architecture (sub-arrays may
overlap)

The receiver consists of NR receive elements also in a
ULA with element spacing dr. In order to separate out the
orthogonal signals and therefore the phase delays from each
of the targets, each antenna of the receive array may employ an
associated matched-filter bank for the NS transmitted signals,
which gives an output signal vector of length NSNR.

A wavefront of a narrowband signal of wavelength λ
originating from a target at an angle θ will have a phase delay
at the nthr element of the receive array given by

u = e−j2πdrnrsin(θ)/λ (1)

with nr = 0⋯NR − 1. The delay from the ntht element of
the transmit array to the target, v, is defined similarly. It is
considered that there are K point targets in a single range bin
in the far-field of the radar array, then the response vector of
the receive array to a plane wave from the kth target can be
written

u(θk) = [1 e−j2πdrsin(θk)/λ⋯ e−j2π(NR−1)drsin(θk)/λ] (2)

and again, the response vector for the transmit array is denoted
as a vector vT (θk), and is defined similarly to u above.

Throughout the paper, K will be assumed to be known, for
example from previous track data. If K is unknown, the
maximum likelihood receiver is still applicable, however an
estimate of the number of targets would need to be included
in the procedure, for example using a Bayesian information
criterion metric as in [8].

The applied transmit beamforming vector is contained in a
matrix T ∈ CNT×NS . Each column of T contains the steering
vector for the relevant sub-array, padded with zeros to fit the
extent of each sub-array. Intuitively, if the non-zero portions of
T overlap, then so do the sub-arrays of the transmitter. With
these definitions, the signal at the receive array can be written
as

R =
K

∑
k=1

u(θk)γkvT (θk)T ∗S +E (3)

where γk is the complex amplitude of the kth point target,
∗ denotes the complex conjugate operation and S ∈ CNS×L

is a matrix composed of samples of the baseband equivalent
signals transmitted from the NS transmit sub-arrays and L
is the number of time samples. That is, S = [sT1 ⋯sTNS

]T .
We enforce a unitary power constraint on the signals in S,
that is E{sisHi } = 1 ∀i, where E denotes the expectation.
E ∈ CNR×L is a disturbance term which is assumed to be
complex circularly symmetric white Gaussian noise with zero
mean and covariance matrix Q.

Equation (3) can be written in matrix form as

R = U(θ)ΓV T (θ)T ∗S +E (4)

withU(θ) = [u(θ1) ⋯ u(θK)], V (θ) = [v(θ1) ⋯ v(θK)],
and Γ is a K × K diagonal matrix of the target complex
amplitudes.

The transmit and receive array responses can be combined
into a single matrix, the two-way antenna pattern, say Y (θ),
which depends on the target directions and the transmit sub-
array steering vectors. Employing the matched filter bank
at the receiver and remembering the unitary signal power
constraint and with γ being a K × 1 vector of the target
complex amplitudes we may write down the matched filter
bank output signal vector, z ∈ CNSNR×1:

z = Y (θ)γ + vec(Ẽ) (5)

where Ẽ = ESH is the noise component of the signal matched
filtered for each of the NS signals and vec(⋅) is the vectorisa-
tion operation (columnwise stacking). Ẽ has covariance matrix
Q̃ = INS

⊗Q, where INS
is the identity matrix of dimension

NS and ⊗ denotes the Kronecker product. This result is shown
in appendix A. The dependence of Y , U and V on θ will be
dropped from here onwards to ease notation.

III. THE LIKELIHOOD FUNCTION

A. Matched-Filtering

To proceed, the signal model is translated to its likelihood
function, which describes the statistical distribution of the
received (and matched-filtered) signal, z, given the variables
of the signal model, that is, the target positions and complex



amplitudes. The noise term, Ẽ is a multivariate Gaussian
distribution, so letting Nz = NSNR the likelihood function
is given by

pz∣θ;γ(z∣θ;γ) = 1

(2π)Nz/2∣Q̃∣1/2

× exp(−1

2
(z −Y γ)HQ̃−1(z −Y γ))

The maximum likelihood estimate of the target parameters
is then found by the maximisation of pz∣θ;γ(z∣θ;γ) over the
desired unknowns, or more formally:

arg max
θ,γ

pz∣θ;γ(z∣θ;γ)

This is obviously equivalent to maximising the exponential
term alone, and therefore the target parameter estimates are
found from

arg min
θ,γ

(z −Y γ)HQ̃−1(z −Y γ) (6)

The maximum likelihood estimate for a model such as this
is developed in [9] and is applied to this estimation problem
here in appendix B. The maximum likelihood estimates of the
angles and complex amplitudes of the targets are given by:

θ̂ML = arg max
θ
zHQ̃−1Y (Y HQ̃−1Y )−1Y HQ̃−1z (7)

γ̂ML = (Y HQ̃−1Y )−1Y HQ̃−1z (8)

The desired quantities can be found by solving (7) which
requires the optimisation over K-dimensions. The result is
substituted into (8) to give γ̂ML. Finding the maximum
of equation (7) requires a K-dimensional search, which is
arduous even for small values of K. To obtain the maximum,
we use here a coarse grid search followed by an alternating
projection method. Other sub-optimal methods for obtaining
the maximum of the likelihood function, for example the
incremental multi-parameter algorithm [10] or SAGE [11],
would be equally applicable to this problem.

B. Without Matched-Filtering

While the matched-filter bank allows us to think in terms
of the transmit beamspace, this process is not necessary for
the maximum likelihood equations to be derived. Without
the matched filters, the likelihood equations operate on the
received data samples directly. The likelihood function is now
given by

pR∣θ;γ(R∣θ;γ) =
L−1

∏
l=0

1

(2π)NR/2∣Q∣1/2

× exp(−1

2
(Rl −UΓV TT ∗Sl)H

× Q−1(Rl −UΓV TT ∗Sl)) (9)

whereRl and Sl denote the lth receive array and signal sample
vectors. The maximum likelihood equations in this receiver
architecture are considered in appendix C.

The maximum likelihood estimate of θ for the non-matched-
filtered data is given by:

θ̂ML = arg max
θ

trace[2Re{RHQ−1UΓV TT ∗S}

+ SHT TV ∗ΓHUHQ−1UΓV TT ∗S] (10)

with Re{⋅} denoting the real part of the argument and

Γ̂ML = (UHQ−1U)−1UHQ−1RSHT ∗V T (V TT ∗SSHT TV ∗)−1

(11)
When the matched-filter bank is not employed, there are L

samples from the environment, though each of these samples
has an SNR of 1/L that of the matched-filtered data sample.
The receiver with the matched-filter bank will only have one
range sample on which to make its estimate, but a much
improved SNR over the receiver which does not matched-filter
the received data. We would expect that having available a
large number of samples would mitigate the reduction in SNR
for the non-matched-filtered data. Another important aspect
of employing the matched-filter bank is that a major benefit
of matched-filtering is that it reduces the relative strength out
of range bin contributions by other targets and clutter to the
data. While this is not an issue for the idealised simulations
shown here, practically this could significantly reduce the
performance of the second receiver architecture.

IV. SIMULATION RESULTS

In order to investigate the performance of the algorithms for
attaining the maximum likelihood estimate, 1000 Monte Carlo
test signals following the model in (4) were generated for a
variety of target parameters. The physical radar parameters
used are: NT = NR = 24 and dt = 1, dr = NS . Figures
3 and 4 show the CRB and MLE for target 1, where two
targets are separated by the angle displayed on the x-axis
using 2 and 3 transmit sub-arrays. Increasing the number of
sub-arrays allows a longer effective aperture to be produced
and the estimation performance is improved. As the targets
move closer than 0.5o the bias in the target DOA estimates
increases as the MLE procedure fails. Figure 3 shows that the
ML procedure does not attain the CRB and this is because
only one data sample is used in the estimation, and this could
be overcome by utilising more transmit pulses. Figures 5 and
6 show the performance of the ML procedure for the two
receiver architectures with and without the matched-filter bank
for L = 32 and L = 64. With 64 data samples, the receiver
architecture which does not use a matched-filter bank meets
the CRB. Reducing the number of available samples to 32,
however, is not enough for the MLE to overcome the low SNR
and the DOA estimation performance is severely reduced.

V. CONCLUSIONS

The maximum likelihood receiver for an orthogonal sub-
arrayed MIMO radar has been investigated in this work and
examples have been presented for the resolution of two targets.
The likelihood equations which must be maximised have
been derived for two receiver architectures, with and without
matched-filter banks at the receive elements. When using a



Fig. 3. Standard deviation and Root CRB of target 1 position estimate for
NS = 2 and NS = 3

Fig. 4. Target 1 position estimate and true position for NS = 2 and NS = 3

matched-filter bank to separate out the signals such that the
data is transformed into the transmit beamspace domain, there
is a performance loss from the CRB caused by working only
from 1 data sample, which could be remedied by employing
more than one transmit pulse to gather further matched-filter
samples, however, this removes the ‘monopulse’ operation
of the radar. Without using a matched-filter bank there are
more available data samples, though the penalty is lower
signal to noise ratio. It has been seen that with enough
data samples, the low SNR can be overcome, and the CRB
was achieved by the sub-arrayed MIMO radar receiver. This
neglects an important advantage of matched-filtering though,
which reduces out of range-bin contributions from other targets

Fig. 5. Standard Deviation of MLE with and without matched filtering,
L = 32

Fig. 6. Standard Deviation of MLE with and without matched filtering,
L = 64

and clutter. Increasing the number of sub-arrays allows a
longer effective aperture to be formed, so the two targets can
be resolved more accurately.

APPENDIX A
MATCHED FILTERED NOISE DISTRIBUTION

The matched filtered noise covariance matrix is

Q̃ = E{vec(Ẽ)vec(Ẽ)H} (12)

where E{⋅} denotes the expectation operator, and vec(⋅) is the
vectorisation, or column-wise stacking, of a matrix. This can
be written as

Q̃ = E{(S∗ ⊗ INT
)vec(E)vec(E)H(S∗ ⊗ INT

)H} (13)

where we have used the facts that

vec(AB) = (BT ⊗ I)vec(A)



and
ABH =BHAH

Only E is a random process, so the two outer terms are not
dependent on the expectation operator and can be brought
outside of it. The expectation is equivalent to IL ⊗ Q, and
a further identity:

(A⊗B)(C ⊗D) = (AC ⊗BD)
which holds when the dimensions are appropriate for the
matrix multiplications (which is true in this case), can be used
to give the result that

Q̃ = (S∗ILST )⊗ (INT
QINT

)
= INS

⊗Q (14)

besause S∗ST = INS
, which is the desired result.

APPENDIX B
MAXIMUM LIKELIHOOD EQUATIONS -

MATCHED-FILTERED DATA

The function to be minimised, say J1(θ,γ) = (z −
Y γ)HQ̃−1(z − Y γ), is differentiated with respect to γ to
find the stationary points of the function. The result proceeds
as follows.

J1(θ,γ) = (zH − γHY H)Q̃−1(z −Y γ)
= zQ̃−1z − γHY HQ̃−1z − zHQ̃−1Y γ

+ γHY HQ̃−1Y γ

Then

J ′1(θ,γ) =
∂J1(θ,γ)

∂γ
= 2Y Q̃−1Y γ − 2zQ̃−1Y (15)

The minimum of the function J1(θ,γ) occurs where
J ′1(θ,γ) = 0 where 0 is a vector of zeros of the appropriate
size, which leads to

2Y HQ̃−1Y γ − 2Y HQ̃−1z = 0 (16)

which, with some simple manipulation shows that the mini-
mum of the likelihood function, that is the maximum likeli-
hood estimate, occurs at a point where

γ̂ML = (Y HQ̃−1Y )−1Y HQ̃−1z (17)

This can be substituted into the original ML equation to obtain
an equation independent of the RCS of the targets.

J1(θ) = (z −Y (Y HQ̃−1Y )−1Y HQ̃−1z)HQ̃−1 ×
(z −Y (Y HQ̃−1Y )−1Y HQ̃−1z)

which after some matrix algebra reduces to

J1(θ) = zHQ̃−1z − zHQ̃−1Y (Y Q̃−1Y H)−1Y HQ̃−1z (18)

The first term does not affect the shape of the likelihood
function, so does not affect the position of the ML estimate,
and so the ML estimate of the target angles as found by
minimising the second term, which is the same as maximising
the term without the negation. Thus

θ̂ML = arg max
θ
zHQ̃−1Y (Y HQ̃−1Y )−1Y HQ̃−1z (19)

APPENDIX C
MAXIMUM LIKELIHOOD EQUATIONS -

NON-MATCHED-FILTERED DATA

Taking the natural logarithm of (9) and dropping terms
which do not affect the ML estimate we have:

J2(θ,Γ) = −
L−1

∑
l=0

(Rl−UΓV TT ∗Sl)HQ−1(Rl−UΓV TT ∗Sl))

This may be rewritten in terms of the trace operator and
expanded as

J2(θ,Γ) = −trace[RHQ−1R −RHQ−1UΓV TT ∗S

− SHT TV ∗ΓHUHQ−1R (20)
+ SHT TV ∗ΓHUHQ−1UΓV TT ∗S] (21)

A necessary condition for the maximum of the function is that
∂J2(θ,Γ)

∂Γ
= 0. So

0 = 2UHQ−1UΓV TT ∗SSHT TV ∗

− 2UHQ−1RSHT TV ∗ (22)

which can be rearranged to form the expression for ΓML in
11.
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