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Abstract—In this paper, the parameter C is introduced as
a figure of merit for comparing the performances of practical
direction-finding (DF) algorithms in terms of their superresolu-
tion capabilities. C takes values between 0 and 1, with higher
values indicating better resolving capability and C = 1 denotes
an algorithm with the theoretically ideal resolution performance.

Analytical expressions for C can be derived for a number
of DF algorithms. In this paper, three such expressions are
derived for MUSIC, ‘optimal’ Beamspace MUSIC and Minimum
Norm. It is found that optimal beamspace MUSIC yields the
smallest resolution separation, which can approach the ideal
when incident signals have equal powers.

NOTATION

a,A Scalar

a,A Column Vector

A,A Matrix

(·)T Transpose

(·)H Conjugate transpose

IN (N ×N) identity matrix

|·| Absolute value

‖·‖ Euclidean norm of vector

exp(a) Element-by-element exponential

I. INTRODUCTION

The resolution performance of an array system is, in general,

a function of array aperture and number of sensors, N . In

practice, these resources are limited and so the purpose of a

superresolution DF algorithm is to achieve high resolution per-

formance without increasing the size of the array. In particular,

algorithms which belong to this category have asymptotically

infinite resolving capability as the number of data snapshots,

L, becomes large. Superresolution techniques have therefore

been an important research topic for several decades [1].

Since the number of snapshots available in practice is finite,

the estimated statistics of the noise-contaminated received

signal are imperfect. This finite sampling effect therefore

imposes limits on system performance. Specifically, theoretical

bounds on three key aspects of DF performance arise:

1) Detection Performance: the capability of a system to

correctly estimate the number of signals, M , impinging

on the array.

2) Resolution Performance: the capability of a system to

yield M separate, distinct directional parameter esti-

mates corresponding to the M impinging signals.

3) Estimation Accuracy: the mean square error of the

directional parameter estimates (which can only be ob-

tained following successful detection and resolution),

with respect to true target directions.

In the case of detection and resolution, overall success de-

pends particularly on the two most closely-spaced sources. De-

tection and resolution performance can therefore each be char-

acterised by a different ‘threshold’ separation, which must be

satisfied in order for detection/resolution to be achieved with

high probability. These thresholds are dependent upon various

system parameters such as: signal-to-noise ratio (SNR), L, N ,

array geometry, source bearings, relative source powers, signal

correlation and the specific practical DF algorithm employed.

In this paper, the parameter C is introduced in order to char-

acterise the impact of practical DF algorithms on resolution

performance. It therefore serves as a useful figure of merit for

comparing the relative resolving capabilities of different su-

perresolution DF algorithms. In Section III, resolution bounds

are examined and the parameter C is derived in general terms.

In Section IV, specific analytical expressions for C are derived

and discussed for the MUSIC, optimal Beamspace MUSIC and

Minimum Norm algorithms for uncorrelated signals. Finally,

the paper is concluded in Section V.

II. ARRAY SIGNAL MODEL

Consider M narrow-band plane wave signals impinging on

an array of N sensors. The (N × 1) received signal vector at

the array output (in the presence of noise) can be modelled as

follows:

x(t) = S(θ, φ)m(t) + n(t) (1)

where m(t) is the M -vector of the baseband source signals,

n(t) is additive noise and S(θ, φ) is the manifold matrix,

having the following structure:

S(θ, φ) = [S(θ1, φ1), S(θ2, φ2), . . . , S(θM , φM )] (2)

with parameter vectors θ = [θ1, θ2, . . . , θM ]T and

φ = [φ1, φ2, . . . , φM ]T denoting the directional parameters

associated with the M sources (e.g. azimuth and elevation,

where azimuth is measured anti-clockwise from the positive

x-axis). The (N × 1) complex vector S(θ, φ) is the array

manifold vector (array response vector):

S(θ, φ) , exp (−jr k(θ, φ)) (3)



of the source signal impinging from (θ, φ). In Equation 3, the

array geometry is represented by the (N × 3) real matrix:

r , [rx, ry, rz] = [r1, r2, . . . , rN ]T ∈ RN×3 (4)

and k(θ, φ) is the wavenumber vector:

k(θ, φ) , 2π

λ
u(θ, φ) (5)

where λ is the signal wavelength and u(θ, φ) is the (3 × 1)
real unit vector pointing from (θ, φ) towards the origin.

III. THEORETICAL RESOLUTION BOUNDS

For a given array, the array manifold is defined as the

locus of the manifold vectors for all (θ, φ) across the whole

parameter space. In the presence of finite sampling effects, the

uncertainty remaining in the system (corresponding to a given

point on the manifold) after L snapshots can be represented

using an N -dimensional hypersphere:

N­dim complex observation space

Fig. 1: Visualisation of an uncertainty hypersphere in an N -

dimensional complex space.

It has been proven in [2, Ch. 8, p. 199] that if the directional

parameters, (θ, φ), are expressed as a function of the arc length

of the manifold curve, then the radius, σe, of the uncertainty

hypersphere is given by the square root of the single-source

Cramer-Rao Lower Bound expressed in terms of the arc length

of the manifold:

σe =
1√

2 (SNR× L)C
(6)

where any additional uncertainty introduced by the practical

DF algorithm is contained within the parameter C (with

0 < C ≤ 1), which scales the hypersphere accordingly.

Evidently, C = 1 denotes the theoretically ideal algorithm,

which introduces no additional uncertainty and eliminates

any dependency which may exist between the parameters

of the received signal. Lower values of C reflect poorer

algorithm performance. Thus, C provides a useful figure of

merit for comparing the relative performances of different DF

algorithms.

Based on this hyperspheres model, there are two laws which

provide the theoretical detection and resolution bounds [2].

Specifically, as a function of (SNR× L), the threshold source

separations, ∆p , |p2 − p1|, are given by the square root law

for detection and fourth root law for resolution:

∆pdet−thr =
1

ṡ(p1+p2
2 )

(σe1 + σe2) (7)

∆pres−thr =
1

ṡ(p1+p2
2 )

4

√
4(

κ̂2
1 − 1

N

) (√σe1 +
√
σe2
)

(8)

where p represents a directional parameter, such as θ, φ or cone

angles. ṡ (p) is the rate of change of manifold arc length at

point p and κ1 is the manifold’s principal curvature (where κ̂1

also takes into account the inclination angle of the manifold).

For a parameterisation in terms of θ, these properties of the

manifold are related to familiar system parameters as follows

[3]:

ṡ (θ) = π cos (φ) ‖Rθ‖ (9)

κ1 (θ) ≈
∥∥∥R̃θ∥∥∥2

(10)

κ̂1 (θ) =

√
κ2

1 (θ)−
∣∣∣1TN R̃3

θ

∣∣∣2 (11)

where Rθ ,
(
ry cos (θ)− rx sin (θ)

)
and R̃θ ,

Rθ
‖Rθ‖ .

This paper is concerned specifically with the theoretically

minimum resolvable source separation (Equation 8) and how

close different practical algorithms - under the same conditions

- come to achieving it. A typical superresolution DF null

spectrum showing a source separation close to resolution

threshold is shown in Figure 2:
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Fig. 2: A typical estimated DOA null spectrum, showing three

successfully-resolved sources at the three distinct nulls. Reso-

lution is considered between the two closely-spaced sources.



IV. ALGORITHM-SPECIFIC EXPRESSIONS FOR C

By substituting the algorithm-specific resolution threshold

expressions given in Appendix A into the expressions for

ideal resolution performance derived in Appendices B and C,

the main results of this paper are now presented. Specifically,

the C parameters for MUSIC, Minimum Norm and optimum

Beamspace MUSIC are given in Equations 11-14, below.

In these expressions, P2
P1

is the ratio of the two closely-

spaced sources’ powers, dr is sensor spacing in units of
λ
2 , θ̆ , θ1+θ2

2 is the midpoint between the two sources

and ∆2 , 1
N ‖r (k (θ2)− k (θ1))‖2 is a geometry-dependent

separation measure. ξmusic (θ) , S(θ)HEnEHn S(θ) is the

MUSIC null spectrum [4], with the columns of En given

by the eigenvectors associated with the (N −M) smallest

eigenvalues of the observed signal’s theoretical covariance

matrix.

Note that Equations 11 and 12 apply only to a uniform linear

array (ULA) and equipower sources, while Equations 13 and

14 are valid for unequal source powers and arbitrary array

geometry. The approximate expression of Equation 12 is only

valid for sufficiently small separations (such that Equation 11

is dominated by the 1/ (N − 2) term).

A. Discussion

As discussed in [6], optimal Beamspace MUSIC is defined

by the beamforming preprocessor, Bopt, which maximises res-

olution performance. Applying the matrix Bopt to the received

data snapshots before any eigenspace-based technique (such as

MUSIC or Minimum Norm) yields the same ‘optimal’ resolu-

tion performance. Since Bopt is independent of P2
P1

, it follows

that the effect of P2
P1

on resolution performance will be the

same for all eigenspace-based algorithms1. Specifically, it is

evident from Equations 13 and 14 that P2P1 causes performance

1Proof of these conditions and a detailed discussion of how to obtain Bopt
are given in [6].

degradation relative to the equipower case, approximately

given by:

Ceigenspace ≈

(
1 + 4

√
P2
P1

)4

8
(

3− P2
P1

) Ceigenspace
given

P2
P1

=1

(15)

which can be approximated by:

Ceigenspace ≈

(
4 + 21P2P1

)
25

× Ceigenspace
given

P2
P1

=1

for P2
P1
& 0.05.

From Equations 11-13, it can be seen that MUSIC (with

arbitrary array geometry) and Minimum Norm (ULA geom-

etry) can both exhibit near-ideal performance for 3-element

arrays when P2
P1

= 1. However, optimal Beamspace MUSIC

can also achieve near-ideal resolution performance for larger

arrays (N > 3), when P2
P1

= 1 and the following condition

holds:

16Lξmusic

(
θ̆
)

N∆2
� 1 (16)

Since, as is shown in Appendix B, ξmusic

(
θ̆
)

is propor-

tional to both ṡ
(
θ̆
)4

(which grows rapidly with increasing

N ) and |θ2 − θ1|4, this condition generally holds for small L,

N and |θ2 − θ1|. In Figure 3, the C parameters for the three

algorithms are compared for ULAs with increasing numbers

of sensors.

In Figure 4, the variation of C as a function of azimuth

is shown (where the shape of the plot depends on the array

geometry).Optimum Beamspace MUSIC clearly exhibits the

best resolution performance, but its superiority is less out-

standing for larger source separations. The same effect can

also be observed for larger numbers of snapshots.

A general trend is that these algorithms perform closer to the

ideal when N , L and |θ2 − θ1| are restricted, but there may be

Cmusic =
1

(N − 2)

2[
1 +

√
1 + L(N+2)(πdr|cos θ2−cos θ1|)2

60

] (only for ULA with P1 = P2) (11)

Cmin_norm ≈ 5

(N + 2)
(only for ULA with P1 = P2) (12)

Cmusic =

(
1 + 4

√
P2
P1

)4

8
(

3− P2
P1

)
(N − 2)

2[
1 +

√
1 +

16
(

1+
P2
P1

)
Lξmusic(θ̆)(

3−P2P1
)
N(N−2)∆2

] (13)

Copt_beamspace =

(
1 + 4

√
P2
P1

)4

8
(

3− P2
P1

) 2[
1 +

√
1 +

16
(

1+
P2
P1

)
Lξmusic(θ̆)(

3−P2P1
)
N∆2

] (14)
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Fig. 3: Copt_beamspace, Cmin_norm and Cmusic as a function of

the number of sensors, N , for a ULA. In each case, θ1 = 34◦,
θ2 = 35◦, P2P1 = 1 and L = 100.

considerable scope for improvement by future algorithms that

can better utilise the greater resolving capacity of the system

as these quantities increase.

MUSIC

opt. Beamspace

Fig. 4: Copt_beamspace and Cmusic for various source separa-

tions (for a 25-element uniform X-shaped array) with P2
P1

= 1
and L = 100. Since Cmusic is relatively insensitive to changes

in |θ2 − θ1|, the separate traces cannot be distinguished.

B. A Note on Correlated Signals

Our discussion so far has considered only uncorrelated

signals. In practice, signals are often correlated (particularly

in multipath signal environments and in applications such as

radar/sonar) and it is well-known that this can severely degrade

resolution performance. A popular method of ‘decorrelating’

signals is spatial smoothing [10]. In [11], it is shown that, for

two equipowered, fully-correlated (coherent) sources imping-

ing on a ULA, the resolution performance of the forward-

backward spatially-smoothed MUSIC algorithm is worse by

a factor of approximately 4 (Nπdr |cos θ2 − cos θ1|)−2
, com-

pared to the standard, uncorrelated case.

V. CONCLUSION

In this paper, the parameter C has been proposed as a

figure of merit for comparing superresolution DF algorithms.

Representative examples were derived for the MUSIC, optimal

Beamspace MUSIC and Minimum Norm algorithms (for un-

correlated signals). It was found that, when sources have equal

powers, all these algorithms can offer near-ideal resolution

performance for 3-element arrays. However, only optimum

Beamspace MUSIC can achieve this for larger arrays.

In general, the greatest scope for improvement by future

superresolution algorithms would be available to those which

can better utilise the greater resolving capacity of the system

as the number of sensors, number of snapshots and source

separations increase.

APPENDIX

A. Algorithm-specific Resolution Threshold Expressions

In this Appendix, analytical expressions are derived for

the parameter C for MUSIC, optimal Beamspace MUSIC

and Minimum Norm. In order to do this, in each case,

an algorithm-specific resolution threshold expression is first

required. Specifically, the results first derived in [5-9] will be

used.

In order to match the conventions of algorithm-specific

threshold expressions found in the literature, it is constructive

to express the theoretically ideal resolution performance of

Equation 8 in terms of (SNR× L):

(SNR2×L)res =
2

∆p4ṡ
(
p1+p2

2

)4 (
κ̂2

1 − 1
N

)
C

(
1 + 4

√
P2

P1

)4

(17)

Resolution threshold expressions for each algorithm will now

be considered and compared to Equation 17.

Following a small modification2, the resolution threshold for

the MUSIC algorithm (first derived by Kaveh and Barabell in

[5]) is shown in Equation 18. It is valid for two equipower,

uncorrelated sources impinging on a uniform linear array

(ULA).

In the literature, several attempts to derive the equivalent

threshold condition for the Minimum Norm algorithm can be

found. However, these analyses yield different results3. In the

absence of a single, widely-accepted threshold expression, it is

2Since the resolution threshold expression given in [5] implies above-ideal

performance for sufficiently small N , we replace [5, Equation B.1] with

a more accurate Taylor expansion. The resulting threshold expression then

agrees with [7].
3In [7], an improvement in resolution performance over MUSIC by a factor

of approximately 5
(N−1)(N−2)
(N−3)(N+2) is suggested. Meanwhile, a factor of about

5
(N−2)
(N+2)

can be found in [8]. A similar (but not identical) improvement of

approximately 5
(N−2)
(N+2)

is also found in [9].



(SNR× L)
(ULA,P1=P2)
music =

2880 (πdr |cos θ2 − cos θ1|)−4

N(N2 − 1)(N + 2)

1 +

√
1 +

L(N + 2) (πdr |cos θ2 − cos θ1|)2

60

 (18)

simply considered here that Minimum Norm’s resolution per-

formance is superior to MUSIC’s, according to the following

approximate relationship:

(SNR× L)min_norm ≈
(N + 2)

5 (N − 2)
(SNR× L)music (19)

The above expressions are valid only for equipower sources

and ULAs. However, the following threshold expressions

(derived by Lee and Wengrovitz in [6]) are valid for unequal

source powers and arbitrary array geometry:

(SNR2 × L)music =(
3− P2

P1

)
(N − 2)

8ξmusic

(
θ̆
)

1 +

√√√√√1 +
16
(

1 + P2
P1

)
Lξmusic

(
θ̆
)

(
3− P2

P1

)
(N − 2) ∆2


(20)

(SNR2 × L)opt_beamspace =(
3− P2

P1

)
8ξmusic

(
θ̆
)
1 +

√√√√√1 +
16
(

1 + P2
P1

)
Lξmusic

(
θ̆
)

(
3− P2

P1

)
∆2

 (21)

It should be noted that Equation 17 shows dependency on

properties of the differential geometry of the array manifold. In

order to obtain compact expressions for C, Equation 17 must

therefore first be manipulated into a more amenable form. As

shown in Appendix B, this task is simplified significantly by

first restricting analysis to the ULA geometry. Furthermore, in

Appendix C, Equation 17 is expressed in terms of ξmusic

(
θ̆
)

for arbitrary array geometry.

B. Ideal Resolution Performance for ULA

For a ULA with its phase centre taken to be its centroid

(with antenna spacing dr), the sensor locations are given by:

rx = dr

[
− (N − 1)

2
,− (N − 1)

2
+ 1, . . . ,

(N − 1)

2

]T
(22)

Using the method of finite differences, it is easily shown that:

‖rx‖ =
dr√
12

√
(N3 −N) (23)

Then, using this result, we similarly find:

κ1 =

∥∥∥∥ rx
‖rx‖

� rx
‖rx‖

∥∥∥∥ =

√
3(3N2 − 7)

5(N3 −N)
(24)

For symmetric linear arrays, κ̂1 = κ1. Substituting Equations

23 and 24 into Equation 17 and setting P2
P1

= 1 then yields:

(SNR2 × L)res =
5760 (πdr |cos θ2 − cos θ1|)−4

N (N2 − 1) (N2 − 4)× C (25)

C. Ideal Resolution Performance in Terms of ξmusic

(
θ̆
)

It can be shown, using the circular approximation of the

array manifold, that the spectral midpoint in the MUSIC

spectrum can be approximated by:

ξmusic

(
θ̆
)
≈
(
κ̂2

1 − 1
N

)
∆p4ṡ

(
p1+p2

2

)4
64

(26)

Although the proof of Equation 26 cannot be included here

due to space restrictions, note that it follows somewhat intu-

itively from Equations 11, 20 and 21. That is, the resolution

performance of optimal Beamspace MUSIC is better than

standard (sensor-space) MUSIC’s by a factor of approximately

(N − 2). According to Equation 11, this would yield near-

ideal resolution performance for a ULA with P2
P1

= 1. Since

ξmusic

(
θ̆
)

contains the effects of arbitrary array geometry,

Cmusic ≈ 1/ (N − 2) holds for arbitrary array geometry and

so comparing

(
3−P2P1

)
4ξmusic(θ̆)

to Equation 17 with P2
P1

= 1 yields

the same result:

(SNR2 × L)res =

(
1 + 4

√
P2
P1

)4

32ξmusic

(
θ̆
)
× C

(27)
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