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Abstract—We present a novel method for speech separation
from their audio mixtures using the audio-visual coherence. It
consists of two stages: in the off-line training process, we use the
Gaussian mixture model to characterise statistically the audio-
visual coherence with features obtained from the training set;
at the separation stage, likelihood maximization is performed
on the independent component analysis (ICA)-separated spectral
components. To address the permutation and scaling indetermi-
nacies of the frequency-domain blind source separation (BSS), a
new sorting and rescaling scheme using the bimodal coherence is
proposed. We tested our algorithm on the XM2VTS database, and
the results show that our algorithm can address the permutation
problem with high accuracy, and mitigate the scaling problem
effectively.

I. INTRODUCTION

Looking at the speaker’s lips improves the intelligibility of

human speech embedded in cocktail party noise [1] due to the

contribution of the complementary visual information to the

audio signal. The complementarity of visual and audio stimuli

is often termed as the audio-visual coherence, which can

be statistically approximated using mathematical techniques.

Therefore, visual stimuli contain additional information about

audio signals, and we can utilize the audio-visual coherence

to assist separation of the source signals from their audio mix-

tures. This is known as audio-visual blind source separation

(BSS), a recent development in multi-modal signal processing.

Different from traditional BSS, where only audio signals are

used [2]–[7], audio-visual BSS incorporates visual information

into the separation process.

Wang et al. [9] implemented such a separation system by

applying the Bayesian framework to the fused feature observa-

tions for both instantaneous and convolutive mixtures of decor-

related sources. Rivet et al. [10] proposed a new statistical tool

utilizing the log-Rayleigh distribution for modeling the audio-

visual coherence, and then used the coherence to address the

permutation and scaling ambiguities in the spectral domain.

Casanovas et al. [13] built relationship between synchronous

structures on both audio and visual modalities, to detect the

audio sources activity and then built the audio models and

separated the original soundtrack from only one microphone

recording. However, the algorithm proposed in [9] considered

a convolutive model with a relatively small number of taps

for the mixing filters; the approach in [10] trained the audio-

visual coherence with high dimensional audio feature vectors,

thus the coherence model was sensitive to outliers. Cross-

modal correlation was not exploited in the separation stage

in [13], which used spectral masks from a pure audio point of

view. The scaling ambiguity problem with the extracted source

components is not addressed in [9] or [13].

We have implemented the similar effect in our previous

works in [11] and [12] to resolve the spectral indeterminacies.

In [11], we combined the Mel-scale frequency coefficients

(MFCC) as audio features with some geometric visual features

to form the audio-visual space, then we proposed an adapted

expectation maximization (AEM) algorithm to train the audio-

visual coherence, which was utilised to address the permuta-

tion problem. In [12], we changed the audio features with

the filterbank analysis, and focused on mitigating the scaling

ambiguity.

In this paper, we consider the convolutive model [4]–[10]

with the assumption of non-Gaussianity and independence

constraints of the sources, which relates to the real room

acoustic mixture model. In the off-line training process, the

power spectrum of the audio signals is mapped into Mel-

scale filterbanks as the audio features; visual features are

extracted from the training videos. We synchronize and merge

the features to obtain the audio-visual data for the estimation

of the parameters of the bimodal coherence characterised

by the Gaussian mixture models (GMM). The audio-visual

coherence is then applied to address the permutation and

scaling indeterminacy in the frequency domain. The main

contribution in this paper is the introduction of a new criterion

for evaluating the confidence of the audio-visual coherence,

which is used to reduce the influence of outliers on the

cumulative log-likelihood.

The remainder of the paper is organised as follows. An

overview of convolutive BSS is presented in Section II. Section

III introduces our detailed training process to obtain the

audio-visual coherence. Detailed indeterminacies cancellation

algorithm exploiting the audio-visual coherence is presented in

Section IV. The simulation results are analysed and discussed

in Section V. Finally Section VI concludes the paper.

II. CONVOLUTIVE BLIND SOURCE SEPARATION

For convolutive BSS, the observation at each sensor is a

sum of filtered source signals. The speech mixing process

for a cocktail party scenario can be approximated with the

convolutive model:

xp(n) =

K
∑

k=1

+∞
∑

m=0

hpk(m)sk(n−m) + ξp(n),

x(n) = H ∗ s(n) + ξ(n),

(1)



where hpk represents the room impulse response filter from

source k to sensor p. We denote x(n) = [x1(n), ..., xP (n)]T

as the observation vector at the discrete time index n; s(n) =
[s1(n), ..., sK(n)]T the source vector and ξ(n) the additive

noise vector; H the mixing matrix whose elements are filters

hpk and ∗ denotes convolution.

Convolutive BSS aims to find a set of separation filters

{wkp} that satisfy:

ŝk(n) = yk(n) =

P
∑

p=1

+∞
∑

m=0

wkp(m)xp(n−m),

ŝ(n) = y(n) = W ∗ x(n),

(2)

where W is the separation matrix whose entry wkp is the

impulse response filter from observation p to the estimate of

source k.

Convolutive BSS can be directly performed in the time

domain [8] by deconvolution, but the computational com-

plexity is very high and sometimes it cannot guarantee the

convergence to a global optimum, especially when the mixing

filters have long taps. Based on the short-time stationarity of

the speech signal and the linear time-invariance of the mixing

process, an alternative is to perform BSS in the time-frequency

domain by applying the short-time Fourier transform (STFT)

to the observations. In each frequency bin f , we get an

instantaneous mixing model:

X(f, t) = H(f)S(f, t), (3)

where X(f, t) = [X1(f, t), ..., XP (f, t)]T and H(f) is the

Fourier transform of the filter matrix H.

ICA is applied separately in each frequency bin f to obtain

the independent outputs Y (f, t) = [Y1(f, t), ..., YK(f, t)]T ,

assumed to be the source estimates:

Y (f, t) = W(f)X(f, t) = Ŝ(f, t). (4)

However, the ICA algorithms can estimate the sources only

up to a permutation matrix P(f) and a diagonal matrix of

gains D(f):

Ŝ(f, t) = Y (f, t) = P(f)D(f)S(f, t). (5)

These are the so-called permutation (P(f)) and scaling

(D(f)) indeterminacy problems.

For the permutation problem, Yk(f, t) may correspond to

different source signals at different frequency bins. Many

algorithms have been proposed, with [9]–[11] or (most of

the available algorithms are) without [5]–[7] the visual infor-

mation. The methods in [9]–[11] use audio-visual coherence

maximization to the alignment of the spectral components,

the approach in [5] utilizes the continuity of the spectral

components while [6] employs beamforming theory and [7]

is a combination of the previous two algorithms. As for the

scaling problem, Yk(f, t) is amplified with different scales at

different frequency bins. The problem is addressed in [10]

from the model variance point of view, [12] mitigates this

problem for a high noise environment by the estimation of the

audio spectrum distribution, and [7] uses a minimum distortion

principle.

III. GMM TRAINING

In the off-line training process, we use a GMM to approx-

imate the joint probability of the audio-visual data uT(t) ex-

tracted from the audio-visual stimuli used for training (denoted

as T).

pAV (uT(t)) =
I

∑

i=1

γiN (uT(t) | µi,Σi), (6)

where γi is the weighting parameter, µi is the mean vector,

Σi is the covariance matrix of the i-th kernel, and each kernel

of this mixture represents one cluster of the audio-visual data

modeled by a joint Gaussian distribution. To model the audio-

visual correlation for each speaker, first we need to extract the

audio-visual features, described as follows.

A. Feature Extraction

We exploit the non-linear resolution of the human auditory

system across an audio spectrum using the Mel-scale filterbank

analysis. We denote Fl as the group of the frequency bins

spanned by the l-th filter. The mono power spectrum is mapped

into these filters to abtain the L-dimensional audio feature

aT(t) = [aT1(t), ..., aTL(t)]T for statistical training, where

aTl(t) = log
∑

f∈Fl

bl(f)|ST(f, t)|2, (7)

and bl(f) is the magnitude of the l-th filter while ST(f, t) is

the spectral component of the training audio. Figure 1 shows a

typical speech signal and its audio features after the Mel-scale

filterbank analysis.
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Fig. 1. The speech signal and its audio features obtained by the filterbank
analysis.

For the visual features, first we crop an area from the video

to get the gross mouth region. We then use snakes [14] to

detect the mouth contour. Snakes, also called active contour

model, is an energy mimization process to delineate an object

outline. Then we relocate the mouth centre and extract a 64×
96 mouth region based on the contour. Then the fast block

discrete cosine transform (DCT) is employed on the mouth

region to compress the image. Finally principal component

analysis (PCA) is applied to the DCT data to get the visual

feature vector vT(t). In the experiment, we used 3 principal



components as visual features, which took up to 64.8% total

variance. Figure 2 shows the detailed visual feature extraction

process.
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Fig. 2. The visual feature extraction process and part of the training visual
features aT(t).

B. Feature Fusion

Using the audio feature vector aT(t) =
[aT1(t), · · · , aTL(t)]T obtained by the L Mel-scale filterbank

analysis, we synchronize and concatenate the visual feature

vector with each element of the audio feature vector to form

L sets of audio-visual vector uTl(t) = [vT(t); aTl(t)]. The

objective of the training process is to obtain the parameter

set λli = {γli,µli,Σli} associated with each uTl(t).
After independent GMM training, L×I parameter sets {λli}

are estimated by the expectation maximization algorithm for

each speaker.

IV. INDETERMINACIES CANCELLATION ALGORITHM

The indeterminacies cancellation algorithm is based on co-

herence maximization. Suppose the separation succeeds with-

out any permutation or scaling ambiguity, then yk(n) = sk(n),
yk(n) will have maximum coherence with its corresponding

video signal vk(t). Treating the frequency bin group f ∈ Fl

as a whole, we can maximize the following criterion in the

frequency domain to address the indeterminacies:

[P̂(Fl), D̂(Fl)] = arg max
P(Fl),D(Fl)

∑

t

K
∑

k=1

log pAV (ukl(t)), (8)

where ukl(t) = [vk(t); akl(t)] is the audio-visual feature,

vk(t) is the visual feature associated with the k-th speaker

at time frame t, and akl(t) is the audio feature extracted from

the k-th source estimate corresponding to the l-th filterbank.

To estimate s1(n) from the observations, we can get the

separation vector p(Fl) and the scale parameter α(Fl) by

maximizing:

[p̂(Fl), α̂(Fl)] = arg max
p(Fl),α(Fl)

∑

t

log pAV (u1l(t)). (9)

A. Permutation Indeterminacy Cancellation

In equation (8), the direct summation of log-likelihood is

very sensitive to outliers. It happens that one outlier may

change the total summation greatly and result in a wrong

decision. To deal with this problem, we propose a new sorting

scheme. For convenience, we present an example of the 2× 2
case:

1. Extract the visual features v1(t) and v2(t) from the

video signal associated with the two speakers.

2. Extract the audio features a1(t) and a2(t) from Y1(f, t)
and Y2(f, t) respectively.

3. Get the audio-visual data ukl(t) = [vk(t); akl(t)] and

uk†l(t) = [vk(t); ak†l(t)], (where k = 1, 2, l = 1, ..., L, and

† denotes the permutation version, 1† = 2, 2† = 1).

4. Calculate the audio-visual probability pAV (ukl(t)) and

pAV (uk†l(t)) based on the GMM model in equation (6) and

the parameter set {λil}k associated with each speaker that has

been estimated in the training stage.

5. Define a criterion:

J (l, t)
def
=

{

1,
∑

k log pAV (ukl(t)) >
∑

k log pAV (uk†l(t))
0,

∑

k log pAV (ukl(t)) <
∑

k log pAV (uk†l(t))
.

6. If
∑T

t=1 J (l, t) > T/2, do nothing; otherwise, swap the

rows of W(f) (i.e. W(f) ←− [ 0 1
1 0 ]W(f)), and Y(f, t) for

f ∈ Fl.

In step 5, we have used a new criterion instead of the

cumulative log-likelihood, to avoid the influence of outliers

as in [11], which is equivalent to majority voting over time

frames. For the sake of accuracy, we can iterate steps 2 to 6.

B. Scaling Indeterminacy Cancellation

Suppose we are now interested in addressing the scaling am-

biguity of source estimate y1(n). If Y ‡
1 (f, t) = α(Fl)Y1(f, t)

is the exact copy of the source speech S1(f, t) for f ∈ Fl with-

out any scaling amplification, i.e., Y ‡
1 (f, t) = S1(f, t), for f ∈

Fl, then this combines with equation (7) to give

T
∑

t=1

a‡
l (t) = 2T log |α(Fl)|+

T
∑

t=1

al(t). (10)

Therefore we can calculate Fl spanned by each filter:

α(Fl) = exp

{

(

T
∑

t=1

a‡
l (t)−

T
∑

t=1

al(t)
)

/(2T )

}

. (11)

∑T

t=1 al(t) is straightforward to calculate, and the priority is

on the estimation of
∑T

t=1 a‡
l (t) from the given visual vector

v(t). First we need to get the marginal probability density of

the visual feature corresponding to each filterbank l:

pV (v(t) | l) =

I
∑

i=1

γliVN (v(t) | µliV ,ΣliV ), (12)

where γliV is the weighting parameter, µliV is the mean

vector, ΣliV is the covariance matrix of the visual data, then



a‡
l (t) can be estimated as:

a‡
l (t) =

I
∑

i

βli(t)µliA, (13)

where µliA is the mean parameter of the audio feature al(t)
for the i-th kernel, and

βli(t) =
γlipV (v(t) | i)

∑

j γljpV (v(t) | j)
.

Then from equation (11) we can estimate α(Fl). In such a way,

we get L scale parameters, and each one affects the frequency

bins spanned by one filter.

However, adjacent Fl overlap with each other, and we can-

not define two scale parameters for an overlapped frequency

bin. To solve this problem, we smooth between the L scale

parameters with linear interpolation, as shown in Figure 3.
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Fig. 3. Smooth between α(Fl) to obtain α(f).

V. EXPERIMENTAL RESULTS

We tested the proposed algorithm on the XM2VTS [15]

multi-modal database. The frontal face videos were captured

at 25 fps and the speech signals were continuous sentences of

words and digits recorded at 32 kHz. For each speaker, there

are 24 recordings repeating 3 sentences. We trained the audio-

visual coherence model of one target speaker with audio-visual

speech lasting for 41 seconds. The audio was downsampled to

16 kHz, and the 32 ms (512 samples) Hamming window with

12 ms overlap was used in the STFT. Audio features were

extracted from 24 Mel-scaled filter banks. We chose the first

3 principal components from the video as the visual features,

and they were upsampled to 50 Hz to be synchronized with

the audio features.

To test the performance of the permutation cancellation

algorithm, the speech signal from the target speaker and

another interference speech signal randomly chosen from 96

audio signals by 4 other speakers were transformed into

the time-frequency domain by the STFT. We swapped the

spectral components of consecutive frequency bins of a filter.

Then we calculated the accuracy rate of the permutation

cancellation with different frame numbers T . In Figure 4, each
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Fig. 4. The permutation accuracy with different time frames.

curve represents the comparison of the target speaker with an

interference speaker. The result is an average of 24 mixtures.

To test the scaling cancellation, we amplified the spectral

components from the target speaker with different scaling

parameters d(f) at different frequency bins. If the scaling

problem was solved successfully, we should get α(f) that

satisfies α(f)·d(f) = 1. Figure 5 shows the real and estimated

scaling factors α(f) with the algorithm described in section

3. The solid curve (estimated α(f) · d(f)) in the lower part is

close to 1, so we have mitigated the scaling problem greatly.
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Fig. 5. The scaling cancellation results.

We then tested the algorithm with convolutive mixtures

synthesized on a computer. The filters {hpk} were generated

by the system utilizing the impulse response measurements

of a conference room [16] with various positions of the

microphones and the speakers. Two audio signals with each

lasting 4 s were convolved with the filters to generate the

mixtures.

We used the signal to interference ratio (SIR) at different

signal to noise ratios (SNRs) as a criterion to evaluate the

performance of our bimodal BSS algorithm. Based on the



extraction of s1(n) from the observations, we have

SIR = 10 log

∑

n ‖
∑P

p=1 w1p(n) ∗ hp1(n) ∗ s1(n) ‖
∑

n ‖ ŝ1(n)−
∑P

p=1 w1p(n) ∗ hp1(n) ∗ s1(n) ‖
.

(14)

The degradation of convolutive BSS performance is maily

caused by the permutation problem. From the upper half of ta-

ble I, we found that after applying the permuation cancellation

algorithm with the sorting scheme in section IV-A, SIRs of the

source signal were improved greatly in a wide range of noise

levels, with the highest point at about 20dB. In this table, the

input SNR is the ratio between the audio signals and gaussian

noise, i.e. energy(s1 + s2)/energy(noise), and the input SIR

is the ratio between a target signal and the interference, i.e.

energy(s1)/energy(s2+noise). The output SIR was caculated

by equation (14). In the lower half of table I, after permuation

indeterminacy cancellation, the scaling ambiguity cancellation

algorithm was applied to the realigned spectral components,

which improved the performance in high noise environment.

TABLE I
OUTPUT SIR (dB) COMPARISON.

10 15 20 25 30

-1.42 -0.91 -0.74 -0.68 -0.66

before sorting 4.02 6.40 8.81 13.41 13.24

after sorting 5.29 9.28 12.97 14.66 14.8

4 6 8 10 12

-3.13 -2.38 -1.82 -1.42 -1.15

before scaling 0.66 2.07 3.83 5.29 6.77

after scaling 2.07 3.71 4.55 5.82 6.80

Input SIR

Output SIR

Evaluation of Permutation Indeterminacy Cancellation

Input SNR

Input SIR

Output SIR

Evaluation of Scaling Indeterminacy Cancellation

Input SNR

VI. CONCLUSION

We have presented a new audio-visual convolutive BSS

system. In this system, we have combined the audio features

with visual features to form an audio-visual feature space.

A new sorting scheme exploiting the audio-visual coherence

to solve the permutation indeterminacy problem has also

been presented. We also provided a new method to estimate

the power spectrum to mitigate the scaling ambiguity. Our

algorithm has been tested on the XM2VTS database and has

shown good performance.
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