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Abstract—A matched filter is the optimal linear filter for 

maximizing the signal to noise ratio (SNR) in the presence of 

additive noise. Matched filters are commonly used in radar 

systems where the transmitted signal is known and may be 

used as a replica to be correlated with the received signal 

which can be carried out by multiplication in the frequency 

domain by applying Fourier Transform (FT). Fractional 

Fourier transform (FrFT) is the general case for the FT and is 

superior in chirp pulse compression using the optimum FrFT 

order. In this paper a matched filter is implemented for a 

chirp radar signal in the optimum FrFT domain. 

Mathematical formula for a received chirp signal in the 

frequency domain and a generalized formula in the fractional 

Fourier domain are presented in this paper using the Principle 

of Stationary Phase (PSP). These mathematical expressions 

are used to show the limitations of the matched filter in the 

fractional Fourier domain. The parameters that affect the 

chirp signal in the optimum fractional Fourier domain are 

described. The performance enhancement by using the 

matched filter in the fractional Fourier domain for special 

cases is presented. 

I. INTRODUCTION 

Matched filters are commonly used in radar in which a 

known signal is transmitted, and the reflected signal is 

examined for common elements of the transmitted one. 

Radar matched filter correlates a known signal (replica of 

the transmitted signal) with an unknown signal (received 

signal) [1].  This is done by computing cross correlation of 

the received signal with the transmitted signal. This is 

achieved by convolving the incoming signal with a 

conjugated and time-reversed version of the transmitted 

signal which can be done using Fourier transform (FT) 

multiplication in the frequency domain before transforming 

back into the time domain. 

The Fractional Fourier transform (FrFT) is a 

mathematical generalization of the ordinary FT, the latter 

being a special case of the first when the fractional angle 

equal o90 [2, 3]. FrFT coverts a chirp signal in the optimal 

fractional Fourier domain to narrow, highly compact, Sinc 

function. FT multiplication is used in Matched filter to 

enhance the signal to noise ratio. This paper investigates the 

concept of the matched filter in the FrFT domain. 

 The paper is organized as follows: The peak position of 

a chirp in the optimum FrFT domain is discussed in section  

 

 

II. Section III uses the principle of stationary phase (PSP) 

to derive the chirp signal in the FT and FrFT domains 

respectively. The matched filter in the FT and FrFT domain 

are presented in section IV. A set of simulation results is 

presented in section V for different parameters. This section 

also includes a discussion on the chirp matched filtering in 

the FrFT domain. Section VI concludes the paper. 

II. FRACTIONAL FOURIER TRANSFORM 

The fractional Fourier transform (FrFT) is the 

generalized formula for the Fourier transform that 

transforms a function into an intermediate domain between 

time and frequency. The signals with significant overlap in 

both the time and frequency domain may have little or no 

overlap in the fractional Fourier domain. The fractional 

Fourier transform of order a of an arbitrary function )(tx , 

with an angleα , is defined as [4]: 
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where ),( attKα  is the transformation Kernel, at is the 

transformation of t  to the tha  order, and 2/πα a=  with 

ℜ∈a .  ),( attKα  is calculated from: 
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A. The optimum FrFT order of chirp 

The optimum order value,
opt

a  for a chirp signal may be 

written as [5]: 
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where fδ  is the frequency resolution (
N

F
f s=δ ), tδ is the 

time resolution (
s

F
t 1=δ ), 

s
F  is the sampling frequency, 

and γ is the chirp rate parameter. 

The optimum FrFT order opta  for the chirp can be 



computed by applying (3) as:  
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where T is the chirp duration, L is the number of samples 

in the time received window, and f∆  is the chirp 

bandwidth.  

B. Peak positioning of a chirp signal 

The peak position pP of a chirp signal in the FrFT domain 

is defined as [6]: 
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where TM is the number of samples in the chirp signal with 

pulse width T , and stt  is the chirp start time sampling 

number. The peak position pP of a chirp signal in the 

optimal FrFT domain can be computed by using (5) and 

parameters of the radar system as follows:  
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C. Shifting property in FrFT 

The fractional Fourier transform is a shift variant transform. 

This property comes directly from the Fourier domain shift 

theorem [7]. In the fractional Fourier Transform case a shift 

in the function or a multiplication by exponential results in 

a mixture of both the operations if a  (the transform order) 

is not an integer. 

Define two functions f and g  with 
a

f  the fractional 

Fourier transform of f  and 
a

g  the fractional Fourier 

transform of g . For Lf ∈  and ℜ∈= 2/πα a  we have:  

Shift rule: if  )()( τ+= xfxg  then [7] 
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Exponential rule: if )()( xfexg xiτ=  then [7],  
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III. PRINCIPLE OF STATIONARY PHASE 

An integration technique known as the principle of 

stationary phase (PSP) [8] can be applied to oscillatory 

integrals of the form: 

∫=
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where )(xs is a slowly varying function and 

)(xφ changes by many cycles over the interval of 

integration. Under these conditions, contributions to the 

above integral over most of the x interval tend to cancel, 

and thus add little to the overall value of the integral [8]. An 

exception occurs for contributions at the stationary points 

of the phase )(xφ , defined as those values of x  for which 
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The PSP states that the integral of (9) has its greatest 

contributions from those values of x  which are stationary 

points of )(xφ on the interval [ ba, ]. The following two 

steps are employed to evaluate the integral (10) involving: 

• Determine the location of the stationary point(s) 

of )(xφ . 

• Evaluate the integrand of (9) at the stationary point *
x . 

If *
x  is the only stationary point on [ ba, ], then an 

approximation for the integral is 
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For the radar signal processing of interest here, the factor 

in square brackets in (11), including magnitude and phase, 

is essentially constant ( )( *xφ ′′ is constant) and need not be 

considered it in the following analysis. 

A. PSP for chirp Fourier transform 

An illustrative application of the PSP involves the 

computation of the Fourier transform of a received chirp 

waveform using PSP. The simplest form for a received 

signal )(ts  as a result of a transmitted chirp may be 

described as 
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where A  is the received signal amplitude, 
o

φ is a random 

phase shift, f∆ is the chirp signal bandwidth, t  denotes the 

time variable of the received chirp signal and T is the pulse 

duration. 

The Fourier transform of the signal )(ts can be written as 
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Using the Principle of Stationary Phase (PSP), the phase of 

integrand 
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The stationary point is 
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Using (12) and (16) in (11) 

*
2*

2
))((

*

2
)()(

tfj
t

T

f
j

j
ee

T

t
recteAfS o π

π
πφ −

∆
−=  

(17) 

Letting oj
eAB

πφ2−= , then the formula of the received 

signal in Fourier domain may be written as: 
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The rect function correctly indicates the nominal 

bandwidth of the chirp waveform and the exponential 

function correctly identifies the quadratic relationship 

across this bandwidth. The result in (18) is an 

approximation formula however it is a useful engineering 

approximation especially in coherent radar problems 

emphasizing phase rather than magnitude. 

B. PSP for chirp FrFT 

The radar received signal )(ts in the FrFT domain )( t

a fS  

is calculated from (1) as 
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where the FrFT kernel ),(
a

ttkα is calculated from (2) as  
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where 
o

u′ , 
o

u  represent the normalized factors for t  and 
a

t  
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Using PSP, the phase of integrand can be described as 
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The stationary point *t  is calculated as 
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and )(
t

fS  in FrFT domain is written as 
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Letting 
T

f
D

∆
=  , the chirp signal representation in the 

FrFT domain may be written as : 
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Eq (25) can be considered as the general transformation of 

the received chirp signal (12) to the FrFT domain with 

angle α . For a special case o90=α  the signal 

representation in FrFT )(
a

tS in (25) can be shown to be the 

same representation as in (18). 

IV. MATCHED FILTER  

The matched filter in both the frequency and the 

optimum fractional Fourier domains are discussed in this 

section.  

C. Matched Filter in Frequency domain 

The matched filter )( fM in the frequency domain 

for )( fS is designed as the complex conjugate of the 

exponential part of the signal )( fS in (18) 
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where H  is  the Hermissian.  The radar return chirp signal 

after the matched filter is  
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To transform )( fS  to the time domain an inverse Fourier 

transform formula is used as  
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Therefore )(ts  can be written as 

∫
∞

∞−

−

∆
= dfe

f

f
rectBts

tfj )(2
)()(

τπ  
(29) 

))(()( τ−∆= tfcsinBts  (30) 

D. Matched Filter in FrFT domain 

The shape of the signal in the FrFT domain in (25) is 

characterized by )
cossin

cos
(

2

2

αα

ατ

Tuf

ut
rect

o

oa

+∆

−
in which the 

position of the signal in the th
a  FrFT domain depends 

on ατ cos
2

o
u . This dependence means the FrFT of the 

same chirp signal with the same chirp width changes 

position in the FrFT depending on two parameters τ and α . 

So the chirp shape in the FrFT depends on the start time 
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T  because 
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As a result the matched filter implementation in the FrFT 

domain requires knowledge about the start time 
start

T which 

is an unknown parameter (all other parameters are known) 

in our case because it depends on the target range 
t

R  from 

c

R
T t

start

2
=  

(31) 

where c  is the speed of light with approximate value 
8103× . While in the case of frequency domain 

transformation (18), the signal is characterized by 
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this depends only on the chirp bandwidth 

f∆ which is known information from the transmitted chirp 

waveform generator. In the special case when 
start

T is known 

or equal to zero, it is easy to relocate the replica signal in 

the optimum FrFT.  

V. SIMULATION RESULTS 

A chirp radar is simulated with pulse width 100 

microseconds and a pulse repetition interval of 1.6 

milliseconds. The incoming base band signals are sampled 

at 1 MHz. Also it is assumed that the radar operating range 

is 1:402 range bins. The desired targets are known to exist 

at range bins = 50 and 250 respectively with target signal to 

noise ratio (SNR) set to 60 dB and a Doppler frequency of 

150 Hz.  FrFT matched filter design dependence parameters 

that were described in Section IV are now presented..  

A. FrFT Matched Filter dependence on 
start

T  

The chirp signal for the target at range bin 50 is shown in 

Fig. 1. It starts at range bin 50 with width 100 bins 

(equivalent to 100 microseconds). In a similar fashion the 

target at range bin 250 starts at range bin 250 with width 

100 bins.  

Both target signals are filtered using a 200 kHz Gaussian 

band pass filter and the FFT of the output is computed. The 

magnitudes of the spectra are illustrated in Fig. 2.  As 

expected the spectra only depends on the chirp band 

width f∆ . The fractional Fourier transform (FrFT) of the 

target signals at range bins 50 and 250 are shown in Fig. 3. 

The optimal order 
opt

a  for the chirp signal calculated from 

(3) is 1.7061 and the absolute value of the FrFT of the 

signal is a spike at a  peak position at sample number 293 

(as seen in the zoomed figure) which could  also be 

determined mathematically from (6). The target signal at 

range bin 250 shown in Fig. 3 appears at sample114 in the 

FrFT domain. From these results the FrFT dependence on 

start time 
start

T even when the chirp signal has the same 

chirp width is evident. 

 
Fig. 1  Chirp signals for different targets ranges 

 
Fig. 2  FFT for different targets ranges 

 
Fig. 3  FrFT for different targets ranges 

B. FrFT Matched Filter dependence on f∆  

Two different target chirp signals with band width of 200 

kHz and 500 kHz respectively are considered next.  These 

target chirp signals start at the same time and are 

completely overlapped in time as seen in Fig. 4. The FFT of 

both signals is seen in Fig. 5. As expected they also overlap 

in the frequency domain. In Fig. 6, the two spikes at 

samples 2125 and 2285 (in the zoomed figures) 

demonstrate the dependence of the signal on the chirp band 

width f∆ in the optimum FrFT domain. From Fig. 6 we can 

observe that if the two chirp signals completely overlap in 

time and frequency they can be separable in the FrFT 

domain. 

C. FrFT Matched Filter dependence on pulse duration 

Consider a received radar signal that comprises two 

chirps with the same start time 
start

T but with different pulse 

width duration are seen in Fig. 7. Both chirps start at range 

bin 150 with pulse width duration equal to 100 micro sec. 

and 120 micro sec respectively. These two signals have the 

same chirp bandwidth so the FFT of both signals are 

identical as seen in Fig. 8. The FrFT of both signals are 

seen in Fig. 9 in sample 203 and 194 (shown in the zoomed  

 
Fig. 4  Chirp signals for different targets bandwidth 

 
Fig. 5  FFT of different targets bandwidth 

 
Fig. 6  FrFT of different targets bandwidth 



for the chirps with pulse width duration equal to 100 micro 

sec. and 120 micro sec. respectively. Thus we can observe 

the dependence of the matched filter design in FrFT domain 

on the chirp pulse with duration. 

D. Performance enhancement using FrFT matched filter 

It is clear from the mathematical model for matched 

filter in FrFT domain (26) and the simulation results 

(section V. A) that to obtain a matched filter in the FrFT 

domain the delay of the received chirp is required.  

Considering a low noise signal interference level then the 

time delay
start

T , can be estimated through two methods: The 

first one using the FrFT of the received chirp using (6), by 

knowing 
p

P we can get 
st

t that is then used to 

determine
start

T . The second one uses the traditional matched 

filter, the matched filter output peak existing at 
start

T of the 

chirp pulse. Using one of these methods to estimate 
start

T  

that used to design the matched filter in the FrFT domain.   

FT and FrFT matched filters outputs for two chirp 

signals with duration 1 sec. and chirp bandwidth 30 Hz 

starting at zero and 7.5 sec are shown in Fig. 10 ( 0=
start

T ) 

and Fig. 11 (estimated 
start

T ) respectively. In these figures 

an improvement of the chirp compressed width using the 

FrFT matched filter rather than the FT matched filter for the 

applications with for 0=
start

T  or estimated
start

T is observed. 

In this case the FrFT matched filter output is narrower 

 
Fig. 7  Chirp signals for different targets pulse duration 

 
Fig. 8  FFT for different targets pulse duration 

 
Fig. 9  FrFT for different targets pulse duration 

 
Fig. 10  FT and FrFT Matched filters for 0=

start
T  

 
Fig. 11  FT and FrFT Matched filters for  known

start
T  

than the FT matched filter. At the -3dB point the ratio 

between the width of the FT matched filter out to that of the 

FrFT matched filter out  is approximately 3.706.   A 

significant reduction in side lobe using the FrFT matched 

filter is also observed in Figs 10 and 11. 

VI. CONCLUSION 

In this paper matched filters in the FT domain and the 

FrFT domain were investigated. The limitation of using 

matched filter in the optimum FrFT for a chirp was shown 

to be the dependence of the chirp shape in this domain on 

the chirp start time and chirp band width. In the special case 

where specific parameters can be estimated then a 

significant enhancement results when using matched filter 

in the optimum FrFT domain compared to the conventional 

FT approach.  

REFERENCES 

[1] S. A. Elgamel and J. J. Soraghan, "Enhanced Monopulse Radar 

Tracking Using Filtering In Fractional Fourier Domain," in IEEE 

International Radar Conference Washington DC, USA, 2010. 

[2] H. M. Ozaktas, O. Arikan, M. A. Kutay, and G. Bozdagt, "Digital 

computation of the fractional Fourier transform," Signal Processing, 

IEEE Transactions on, vol. 44, pp. 2141-2150, 1996. 

[3] H. M. Ozaktas, G. Zalevsky, and M. A. Kutay, The Fractional Fourier 

Transform: with Applications in Optics and Signal Processing: John 

wiley & Sons Ltd, January 2001. 

[4] C. Candan, M. A. Kutay, and H. M. Ozaktas, "The discrete fractional 

Fourier transform," Signal Processing, IEEE Transactions on, vol. 48, 

pp. 1329-1337, 2000. 

[5] C. Capus and K. Brown, "Short-Time fractional fourier methods for the 

time-frequency representation of chirp signals," The Journal of the 

Acoustical Society of America, vol. 113(6), pp. 3253-63, 2003. 

[6] R. Jacob, T. Thomas, and A. Unnikrishnan, "Applications of Fractional 

Fourier Transform in Sonar Signal Processing," IETE Journal of 

Research, vol. 55, pp. 16-27, 2009. 

[7] A. Bultheel and H. Martìnez Sulbaran, "A shattered survey of the 

fractional Fourier transform, 

http://www.cs.kuleuven.be/_nalag/papers/ade/frft/index.html," 2003. 

[8] E. Leith, "Review of 'Systems and Transforms with Applications to 

Optics' (Papoulis, A.; 1968)," Information Theory, IEEE Transactions 

on, vol. 18, pp. 451-452, 1972. 

 


